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Abstract—We introduce a design study process model for medical visualization based on the analysis of existing medical visualization
and visual analysis works, and our own interdisciplinary research experience. With a literature review of related works covering
various data types and applications, we identify features of medical visualization and visual analysis research and formulate our
model thereafter. Compared to previous design study process models, our new model emphasizes: distinguishing between different
stakeholders and target users before initiating specific designs, distinguishing design stages according to analytic logic or cognitive
habits, and classifying task types as inferential or descriptive, and further hypothesis-based or hypothesis-free based on whether they
involve multiple subgroups. In addition, our model refines previous models according to the characteristics of medical problems and
provides guidance for each step. These improvements make the visualization design targeted, generalizable, and operational, which
can adapt to the complexity and diversity of medical problems. We apply this model to guide the design of a visual analysis method and
reanalyze three medical visualization-related works. These examples suggest that the new process model can provide a systematic
theoretical framework and practical guidance for interdisciplinary medical visualization research. We give recommendations that future
researchers can refer to, report on reflections on the model, and delineate it from existing models.

Index Terms—Design study, medical visualization, process model

1 INTRODUCTION

Medical visualization aims to help practitioners and researchers better
understand and analyze medical data and information by transforming
medical data into visual forms such as graphs and images through
computer graphics and image processing techniques [42]. Medical
visualization is a key research area in the current data-driven healthcare
practice, focusing on the acquisition of medical evidence and helping
stakeholders to understand and analyze medical data. Visualization
and visual analysis of medical data enables supporting clinical decision
making, improving healthcare, simplifying presentation of healthcare
data, and accelerating healthcare performance, etc. [1, 59].

Design study is an increasingly popular form of problem-driven
visualization research [64]. Sedlmair et al. define design study as an
interdisciplinary research method in which visualization researchers
analyze a specific real-world problem faced by domain experts and de-
sign a visualization method to support the solution of the problem [64].
Tasks in the real world can be classified into problem-driven tasks and
technology-driven tasks [30]. Medical data analysis tasks are mostly
problem-driven, and their main goals are to use various medical data
to address specific problems in real medical scenarios. The design
study methodology can take advantage of the synergy between visual-
ization and medical experts to create tailored visualization techniques
and solutions for diverse needs, thereby addressing specific medical
challenges.

Although some design study process models and practical guide-
lines are available to provide guidance for general visualization design
practices, there is still a lack of a systematic methodology considering
the specialty of the area of medicine to guide the specific design and
research process in medical visualization. This absence often makes
it difficult for researchers to realize the full potential of visualization
when solving complex problems in medicine, and it also limits the
efficiency of interdisciplinary collaboration.

In this paper, we propose a design study process model for med-
ical visualization and visual analysis. The model is tailored for the
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characteristics of medical data and analysis tasks based on a literature
review and our own experiences. Our first contribution is that the spe-
cialized model covers the whole process from collaborator selection all
the way to the final evaluation through steps of visualization solution
implementation as shown in Fig. 1. We identify three factors that are
critical for medical visualization, namely, stakeholders, stages, and
subgroup analysis. At each stage of the model, we provide referable
guidance to assist researchers and practitioners working for an appro-
priate visualization solution that addresses a specific medical problem.
The usefulness of the model is demonstrated through four use cases of
medical visualization works.

Our second contribution includes several recommendations for med-
ical visualization design studies. We recommend that researchers con-
duct thorough discussions with collaborators to ensure a proper and
consistent understanding of the specific domain problem. In a specific
visualization design, the relevant stakeholders and the final target users
should be determined, different stages can be distinguished according
to the analytic logic and cognitive habits of knowledge acquisition,
and task types can be distinguished according to whether they involve
subgroups. We recommend prioritizing a controlled study to evaluate
the designed visualization and using a rigorous method, such as a pilot
study, to help calculate the minimum sample size of the controlled
study.

2 RELATED WORK

Our work is closely related to design study methodologies, and process
models and guidelines thereof.

2.1 Design Study and Its Applications
Design study is an interdisciplinary research method in visualization.
It is mainly the design centered on domain expert users for specific
domain problems. In interdisciplinary settings, design study tends
to have a higher success rate than human-centered design (63% vs.
25%) [79], and its core value lies in being problem-oriented, providing
targeted solutions, and enhancing user experience through user-centered
design, ensuring that visualization solutions better match user needs
and expectations.

Design study methodology can be applied to a variety of domains, in-
cluding medicine. The IRVINE visual analytics system was developed
in close collaboration with automobile engineers to leverage interactive
data labeling and clustering methods to facilitate the analysis of large
amounts of acoustic data to detect and understand previously unknown
errors in the electric engine manufacturing process [10]. RfX is a visual
analysis system for analyzing the decision-making process of random
forests, it allows expert automotive engineers without data analysis



Fig. 1: The design study process model applicable for medical visualization. Steps of the model are elaborated in Sec. 3. New factors introduced in
our model are in orange, and details thereof are summarized in Tab. 2 and 4.

background to identify the relationships in the feature subspace of
random forests and detect hidden patterns in the underlying data of
the model, which helps to change the electric engine test program and
reduce the test time of components [11]. Overview is an application for
systematic analysis of large document collections based on document
clustering, visualization and tagging, and this analysis goes beyond
the journalism domain and involves the design and evaluation of other
visualization tools [4]. GEViTRec can handle a variety of dataset types
and automatically generate visually coherent combinations of graphs,
which can help genomic epidemiology experts identify and contain out-
breaks of deadly diseases such as Ebola [9]. A web-based visualization
tool named Trevo was developed for evolutionary biologists to analyze
relationships between species, which can visually explore and analyze
multivariate datasets and phylogenetic trees [61].

2.2 Process Models and Practical Guidelines for Design
Study

The four-level nested model by Munzner [46] is a well-known model
that can guide visualization design and validation. Many later models
related to visualization design have connections to this nested model.
Sedlmair et al. introduce a nine-stage framework–learn, winnow, cast,
discover, design, implement, deploy, reflect, and write [64]. The frame-
work is overall linear, indicating that one stage follows another, with
some operations dependent on earlier stages. The framework can pro-
vide some guidance for those conducting a design study and also serve
as a starting point for further methodological discussions.

A typical design study can take months or even years to complete.
Syeda et al. propose a design study “Lite” methodology (DSLM) [73],
which is a simplified version of the nine-stage framework [64], fol-
lowing the nested model [46] with additional preconditions and scope.
The DSLM approach speeds up the design study process and makes it
available to novice students within a 14-week time frame.

To fill the gap between the activities that visualization designers
engage in and the visualization decisions they make, McKenna et al.
propose the design activity framework, including four overlapping
activities – understand, ideate, make, and deploy [41]. Unlike the
nine-stage framework [64], this framework not only contains activities
and methods, but also considers motivations, outcomes, and explicit
connections to the nested model [46]. By enabling and emphasiz-
ing workflows, the framework provides high flexibility, allowing it to
capture the true nature of multilinear, real-world visualization design
more completely than previous process models to help guide designers
through the visualization design process.

Lam et al. [34] propose a framework designed to bridge the gap
from high-level domain goals to specific low-level tasks, which helps
locate analysis goals by placing each goal under the axes of specificity
(explore, describe, explain, confirm) and number of data groups (single,
multiple). With this framework, a visualization designer or researcher
first determines the analysis goal for each unit of analysis in the anal-
ysis stream and then encodes the individual steps using existing task
classifications. Combining the target context, the level of specificity,
and the number of groups participating in the analysis, it is possible
to transform the questions asked and actions taken by the target users
from the domain-specific language and context into a more abstract
form, and then proceed to the next step of visualization design work.

In addition to the aforementioned models, some practical guide-
lines can guide researchers to conduct visualization and visual analysis
design. Shneiderman proposes that different visualization methods
should be selected according to different tasks and data types in the
process of information visualization [65]. Roberts et al. propose the
Five Design-Sheet (FDS) [60] method, which enables users to itera-
tively create information visualization interfaces using a low-fidelity
approach. Kerzner et al. develop a framework for the Creative Visu-
alization Opportunity (CVO) workshop that can help create outcomes
that advance visualization methods in the early stages of visualization
research [31]. VizItCards is a card-driven workshop developed for
information visualization that aims to provide practice in good design
skills while reinforcing key concepts, to produce positive collabora-
tion and high-quality design [21]. Meyer et al. explore the nature of
visualization design study from the perspective of interpretivism, and
proposed a preliminary set of six criteria for rigor, aiming to guide re-
searchers to construct, communicate and evaluate rigorous knowledge
claims and get them to rethink how to conduct effective design study
and learn new things in the process [44].

Although existing process models are available to guide design
studies, they are generic as they aim at a wide range of application
areas. To our knowledge, an operational process model that takes into
account the characteristics of medical problems to guide a specific
medical visualization design study is nonexistence yet. A comparative
analysis of our model and existing models can be found in Sec. 6.2.

3 DESIGN STUDY PROCESS MODEL FOR MEDICAL VISUALIZA-
TION

In this section, we first identify features of medical-related visualization
and visual analysis works through a literature review. Subsequently,
we introduce the design study process model for medical visualization
based on the findings of the review.

3.1 Features of Medical Visualization and Visual Analysis
This study systematically reviewed literature on visualization and vi-
sual analytics addressing specific medical problems (“medical-related").
The two authors jointly discussed the inclusion and exclusion criteria,
cross-validated the literature screening process, and collectively re-
viewed the included literature. When there were discrepancies in the
coding of the literature, further discussions took place, leading to a
final decision. The workflow of the literature review process is shown
in Fig. 2.

We excluded review/survey papers, Mixed Reality (MR), Virtual
Reality (VR), and Augmented Reality (AR) applications. Additional
exclusion criteria were as follows: (1) Non-medical-related visualiza-
tion; (2) Scientific visualization (such as focusing on image segmen-
tation and calibration); (3) Studies involving non-human species; (4)
Guidelines or position papers (e.g., discussing visualization roles or
summarizing experimental insights). We conducted a comprehensive
literature search across five key publication venues. Using the search
strategy (("biomedical" OR "clinical" OR "disease" OR "health" OR
"healthcare" OR "medicine" OR "medical") AND ("visualization" OR
"visual analytics")), we searched IEEE Transactions on Visualization
and Computer Graphics (TVCG), the ACM CHI Conference on Human
Factors in Computing Systems (CHI), Computers & Graphics (C&G),



and Computer Graphics Forum (CGF), spanning the years 2020 to
2025. This search yielded 325, 11, 67, and 20 articles from these
venues, respectively. Additionally, we retrieved all papers published in
the Eurographics Symposium on Visual Computing for Biology and
Medicine (VCBM) between 2020 and 2024, obtaining 74 articles. This
initial search resulted in a combined total of 497 articles from these
five sources. Subsequent screening by titles and keywords refined this
to 175 articles. Abstract review led to 78 articles retained for full-text
assessment, with a primary focus on the methodological contributions
detailed in each paper.

Fig. 2: The workflow of the literature review process. Initial searches
identified 497 articles (TVCG: 325, CHI: 11, C&G: 67, CGF: 20, VCBM:
74). Title and keyword screening excluded 322 non-eligible articles.
Abstract screening of the remaining 175 articles excluded a further 97,
leaving 78 articles for full-text assessment.

These works cover a wide range of data from molecular to individual
to population levels, such as genes, proteins, computed tomography
(CT), magnetic resonance imaging (MRI), electronic health records,
patient self-recorded data, prescription data, population mobility data [6,
7,12,16,24,26,29,43,45,50,52,54,57,68–70,78], etc. They are designed
mainly for insight analysis and decision support [6,12,13,27,29,32,53,
55, 62, 63, 68, 69, 77, 79, 81, 83] or medical education and information
communication [33, 36, 42, 52, 57, 67]. People involved in these papers
are mainly medical professionals who have background knowledge
of a specific medical problem, for example, surgeons, radiologists,
(bio)medical experts, microscopists, pathologists, etc. [13, 24, 26, 27,
29, 43, 45, 57, 69, 77, 78, 83]. Some of them also involve non-medical
professionals such as patients, the general public [36, 42, 57, 63, 67],
and semi-professionals such as medical students [52, 80].

Through detailed reading and analysis of these papers, we identify
three features that have not been discussed or represented in existing
process models.

• A medical problem may involve multiple stakeholders. For
example, when using multiplexed tissue image data to describe tu-
mor characteristics, it is necessary to consider the different needs
of cell biology experts and pathologists [26]. Narrative-driven vi-
sualization that involves both clinicians and the elderly in iterative
design can help the elderly understand medical information [36].

• The analysis and resolution of certain medical problems may
need to be carried out in stages. For example, the protein loop
grafting process is divided into six stages according to the ac-
tual workflow to assist protein engineers in insight analysis [50].
Analyze the data of patients with acute ischemic stroke accord-
ing to different stages of the analysis pipeline to drive clinical
decision-making [32].

• Some medical problems focus on differences between sub-
groups. For example, explore the differences between healthy
volunteers and patients with a pathologically altered aorta [43],
compare the differences in brain activity among different patient
groups [29].

Table 1: Design features of the reviewed medical visualization works.

Features Number of papers

Multiple stakeholders 62
Multiple stages 33
Multiple subgroups 38

In Tab. 1, we summarize the frequencies of these features of the 78
reviewed papers.

3.2 Process Model for Medical Visualization
Considering the characteristics of medical visualization and visual
analysis work (Sec. 3.1), along with our own research experience and
insights from different design study process models and practical guide-
lines described in previous work (Sec. 2.2), we propose a design study
process model suitable for medical visualization as shown in Fig. 1.
The steps of this model are as follows: (1) select collaborators and iden-
tify domain problems; (2) identify stakeholders; (3) locate the analysis
goals; (4) dismantle the analysis goals; (5) design visualization; (6)
implement prototype; (7) evaluate; (8) promote. In the remainder of
this section, we explain each step of the model in detail.

3.2.1 Select Collaborators and Identify Domain Problems
Design study is typically problem-driven visualization research con-
ducted in collaboration with domain experts [64]. In our experience,
we have communicated with many medical experts about potential col-
laborations during our daily work. However, most of these interactions
tend to be superficial and rarely lead to valuable collaborations. Collab-
orators should be selected before the design study officially begins. The
criteria for selection should include that they deal with state-of-the-art
medical problems, have access to appropriate data, and are convinced
of the power of visualization. Once the collaborators are identified,
further discussions are needed to identify the specific medical problem
to address.

Semi-structured interviews [80] are a commonly used way to figure
out the real thoughts and demands of the collaborator, which can help
identify domain problems.

3.2.2 Identify Stakeholders
Medical problems may involve multiple stakeholders (e.g., role 1, role
2, . . . role m), such as doctors, nurses, and patients. Stakeholders in
this paper refer to anyone concerned with a specific medical problem,
including the collaborators selected in Sec. 3.2.1, other than the vi-
sualization researchers, who are an integral part of any design study
project. Different stakeholders have various expertise, backgrounds,
needs, and perspectives, and may have different opinions on problem
definition and solution [58], all of which pose challenges to visual-
ization design [5, 39]. Researchers have recognized the importance
of considering individual and group differences in data visualization
systems, rather than relying on a “one-size-fits-all” interface [38].

Before conducting a specific medical visualization design study, it
is necessary to repeatedly and deeply discuss with collaborators to
jointly identify the different stakeholders involved in a specific medical
problem. Oppermann et al. find that some design studies are initiated
primarily by obtaining interesting real-world datasets rather than select-
ing specific stakeholders, and propose the concept of data-first design
studies [51]. In data-first design studies, early selection of data can
limit the appropriate selection of stakeholders, who are selected based
on whether the selected data source can support their tasks. Stake-
holder identification can also be data-driven, that is, finding potential
stakeholders based on available data.

Further analyzing the 62 works involving multiple stakeholders, we
find that the relevant tools or systems or methods are designed for a
specific role, that is, focused on the target user, and not always for
all stakeholders, especially when involving multiple stakeholders with
inconsistent levels of expertise. Different levels of medical expertise of
stakeholders and target users (professionals, semi-professionals, and



non-professionals) can correspond to the above-mentioned three main
medical-related visualization applications (Tab. 2).

Table 2: Stakeholders vs. Target Users

Stakeholders Target users Applications

various backgrounds
professionals

professionals as a
whole

insight analysis and decision
support

professionals and semi-
professionals

semi-professionals
(e.g., students)

medical education

professionals and non-
professionals

non-professionals
(e.g., patients)

information communication

Implicit in selecting stakeholders is the need to specify the target
users. For instance, a patient-doctor communication requirement for
a clinical procedure is raised by the collaborating specialist doctor
(collaborator). Here, different stakeholders may be involved, such as
doctors of varying levels of expertise and the patients. However, the
target users of the tool, designed for this case, can be either doctors (to
assist with the preparation of the procedure) or patients (to help them
understand the procedure for informed consent).

3.2.3 Locate the Analysis Goals
After the stakeholders are identified, it is necessary to make clear what
the different stakeholders each consider to be the objectives of the
analysis for a particular problem. For example, role 1 has goals 1,2,3,
role 2 has goals 2,4,5,6, etc. (Tab. 3). Combining all the goals of
different roles results in the final analysis goals for the domain problem
identified in Sec. 3.2.1.

Table 3: An example of analysis goals for different stakeholders

Stakeholders Analysis Goals

role 1 goals 1,2,3
role 2 goals 2,4,5,6
. . . . . .

role m goals 3,5,. . ., n

roles 1,2,3,. . ., m goals 1,2,3,. . ., n

Organizing them together in a seminar [31] or interviewing everyone
through a semi-structured interview [80] are actionable ways to gather
the goals of various stakeholders.

3.2.4 Dismantle the Analysis Goals
Analysis goals can be divided into different stages depending on the
target users. As shown in Tab. 2, applications for professionals are
mainly insight analysis and decision support. The solution of a specific
medical problem may need to be carried out gradually in stages accord-
ing to the analytic logic, and the analysis of the subsequent stage needs
to depend on the analysis of the previous stage. The applications for
semi-professionals, such as students, are medical education, and two
levels can be applied to distinguish the different stages. Students can
acquire knowledge passively, which may require the gradual design of
visualizations in the order of cognitive habits, such as from easy to diffi-
cult, from diagnosis to treatment to prognosis, etc. Students can also be
active in acquiring knowledge, which involves a data analysis process,
so that the visualization can be designed stage by stage according to
analytic logic. Applications for non-professionals, such as patients
or the general public, are information communication. Designing and
conveying knowledge and information in line with the cognitive habits
is beneficial for visualization design. The works reviewed are also
divided into stages in these two levels.

Previous process models [34, 46, 64] propose to abstract domain
problems into tasks. In our model, we believe it is necessary to further
distinguish different analysis tasks within each stage. Specifically, when

Table 4: Dismantle analysis goals into stages and tasks, considering
target users and subgroups.

Target users Stages Subgroups Tasks type

professionals analytic logic yes inferential: hypothesis-
based (recommended)

no inferential
semi-
professionals

active learning:
analytic logic

yes inferential: hypothesis-
based (recommended)

active learning:
analytic logic

no inferential

passive learning:
cognitive habits

no descriptive

non-professionals cognitive habits no descriptive

focusing on passive learning by students or information communication
by non-professionals, different stages can be distinguished according to
cognitive habits, at which point we define the task type within the stage
as descriptive. When targeting active learning by students or insight
analysis and decision support by professionals, different stages can be
distinguished according to the analytic logic, at which point we define
the task type within the stage as inferential.

In medicine, a specialized category of inferential tasks involves the
analysis of differences among multiple subgroups, such as healthy ver-
sus pathological cohorts. Hypothesis-driven tasks encompass the formu-
lation of testable hypotheses regarding specific conditions, followed by
the design of experiments to either validate or refute these hypotheses.
When a task involves multiple subgroups, using a hypothesis-driven
approach and designing visualizations based on possible differences
among different groups can help develop effective methods to compare
these differences and drive decision support. We therefore recommend
that inferential tasks can be further distinguished as hypothesis-based or
hypothesis-free, depending on whether different subgroups are involved.
For those defined as inferential, if they involve different subgroups,
their analysis may benefit from a hypothesis testing. We define this
type of analysis as hypothesis-based; Otherwise, hypothesis-free.

This decomposition of analysis goals into stages according to differ-
ent target users and further differentiation of different tasks depending
on whether subgroups are involved could simplify the analysis and
solution of medical problems and speed up the visualization design
process.

3.2.5 Design Visualization

Intuitive and effective visualizations help users learn quickly [83].
Factors such as data type, purpose and audience, data volume and gran-
ularity, complexity of data, relationships and patterns of data, spatial
properties of data, clarity and conciseness, and required interactivity
need to be considered when choosing the appropriate data visualization
technique to make informed decisions [15, 22, 65].

Many popular data visualization techniques applicable to various do-
mains are used in medical visualization-related works. For example, bar
charts to show specific values for each category [7, 53, 78], histograms
to show the frequency of a particular event [26, 43], line charts to track
the evolution of variables over time [45, 53], heat maps to display the
density or intensity of data points [43, 45, 78], scatter plots to demon-
strate the relationship between two continuous variables [7,70,78], box
plots to reflect the distribution of variables [7, 78], violin plots also
used to reflect the distribution [43], network charts to represents the
connection between data points [27], parallel coordinates to visualize
multivariate data [7, 43], and interactive techniques to explore patterns
in data [26, 42, 43, 45, 50, 54, 62, 78].

In the process of medical visualization design studies, the practical
guidelines mentioned in Sec. 2.2, such as FDS [60] and VizItCards [21],
can be combined to select different visualization techniques or combine
multiple techniques [26,43,45,50,54,74,78] to help create expressive vi-
sualizations according to different medical problems, target users, analy-
sis tasks and data types. There is also a need to design and evaluate new
visual encodings and visualization techniques [14, 42, 45, 67, 70] when



necessary. In addition, it is sometimes necessary to devise algorithms to
improve computation and rendering efficiency [6,26,53]. Well-designed
algorithms play a key role in data preprocessing and optimization, visu-
alization generation, and interaction enhancement [23, 75, 82], which
can improve the efficiency and depth of data analysis, help users extract
valuable information from complex data, and improve decision support.
Combining visualization techniques, visual encodings, interaction tech-
niques, and efficient algorithms can help achieve effective visualization
design for specific medical problems.

Visualization design is a subjective process that emphasizes the
importance of iterative design, which is in line with the design rec-
ommendations made by Opaleny et al., who argue that the iterative
design process is important to find a representation that conforms to
the conventions and requirements of the application domain [50]. Visu-
alization designers can iterate the design based on feedback from the
evaluation step (Sec. 3.2.7), focusing on whether different visualization
designs meet the analysis requirements of different tasks.

3.2.6 Implement Prototype
Aforementioned visualization techniques or algorithms for different
purposes do not exist in isolation. They need to be integrated to form
an interactive visualization interface, i.e., a visualization prototype.

While visualization can reveal data patterns, overly complex inter-
faces may increase cognitive load and hinder the usability of the system,
especially in scenarios involving interaction across multiple rounds of
iterations during toolkit design [76]. Therefore, in the design of specific
visualization interfaces, it is possible to consider providing a multi-level
view to visualize complex high-dimensional data and support progres-
sive analysis. For example, FraudAuditor [83] divides the analysis task
and coordination view into three levels – overview level, group level,
and patient level. Researchers may also consider creating multiple
cascaded views based on the logical order of the analysis process or
cognitive habits (Sec. 3.2.4). In addition, different prototypes can be
developed for various stakeholders (Sec. 3.2.2).

In specific medical visualization design studies, analysts can also
refer to the FDS [60] and VizItCards [21] methods to first design proto-
type sketches, then create the prototype, and iterate the prototype when
necessary based on the evaluation results (Sec. 3.2.7). The iteration
can focus on whether the functions designed for the same stage or for
a specific target user population are well integrated into the prototype.
The ideal prototype should reasonably integrate all the task analysis re-
quirements of the specific target users, and distinguish views by stages,
presenting them in the form of a single interactive interface or multiple
interfaces.

3.2.7 Evaluate
Value-driven visual evaluation [71] argues that the evaluation of a tech-
nology or system should be able to identify and illustrate its value, and
should also be able to potentially improve the technology and system
being built. After completing the visualization design and prototype
design under the various visualization design requirements formed in
the goal dismantling (Sec. 3.2.4) step, it is necessary to use appropri-
ate methods to evaluate the effectiveness of visualization according to
different target users, analysis goals, problems, etc. Researchers can
also continue to iterate and improve with user feedback to obtain a
satisfactory visualization solution. This iterative design process has the
potential to alternate between visualization design (including prototype
design) and evaluation, which is reflected in Fig. 1 as bidirectional and
reverse arrows.

Various types of methods are available to evaluate visualization
designs. Dashboard Comparison effectively evaluates visualization effi-
cacy by analyzing internal structure, functionality, accuracy, and interac-
tivity when parameters of different dashboards are closely aligned [25].
Insight-based Evaluation measures visualization effectiveness by cap-
turing user insights through verbal reports or task-based feedback,
enabling design comparison and refinement [49]. Heuristic Evaluation
is a rapid usability method where evaluators assess an interface to iden-
tify specific design issues impacting user experience [48]. Eye-tracking
evaluates usability by analyzing gaze patterns, attention distribution,

and visual search strategies to optimize interface design and infor-
mation prioritization [3]. Field Observation studies real-world user
interactions to derive design requirements and improve visualization
tools based on observed workflows [56]. Interviews and Focus Groups
employ think-aloud techniques to gather participant feedback on the
evaluation of visualization comprehension, perception, and design [35].
Standardized questionnaires (e.g., SUS [28], NASA-TLX [20], Lik-
ert [37] scales) collect user feedback on visualization satisfaction and
usability, while statistical metrics (e.g., task time, accuracy) provide
quantitative evaluation for design optimization. Algorithmic perfor-
mance in visualization is evaluated through numerical metrics such as
runtime, false positive rate, false negative rate, and scalability.

Table 5: Evaluation methods commonly used in medical visualization.

Evaluation
methods

Possible combined methods Evidence level in
medicine

Controlled
studies

Various methods can be combined,
such as Dashboard Comparison,
Insight-based Evaluation, Heuristic
Evaluation, Eye-tracking, Interviews
and Focus Groups, Standardized
Questionnaires

Highly recognized
(quantitative or qual-
itative, and usually
quantitative)

Case studies Multiple methods can be combined,
such as Insight-based Evaluation,
Interviews and Focus Groups

Less common (usually
qualitative)

User
evaluations

Multiple methods can be combined,
such as Dashboard Comparison,
Insight-based Evaluation, Heuristic
Evaluation, Interviews and Focus
Groups

Less common (usually
qualitative)

In most cases, a single evaluation method is not sufficient for the
evaluation of visualization design, and multiple evaluation methods
need to be combined [26, 27, 53]. Commonly used comprehensive
evaluation methods (see Tab. 5) are controlled studies [2], case stud-
ies [66], and user evaluation [17], which combine and take advantage
of various evaluation methods, not limited to the ones mentioned above.
Controlled studies, which can be a comparison between two groups or
a comparison between the designed system and an existing system, are
highly recognized evaluation methods in the medical domain.

In the process of a specific medical visualization design study, re-
searchers should examine the reliability, validity, and sensitivity of
evaluation indicators in capturing desired results and accurately assess-
ing the performance of visual analytics systems [25]. Reflecting on
evaluation goals and problems before choosing a specific evaluation
method can provide a new space for people to evaluate visualization
effectively and efficiently. According to the specific domain problem or
goal, one or more evaluation methods can be applied, and the results ob-
tained by analyzing and synthesizing various evaluation strategies can
illustrate the value of visualization or enhance the current visualization
system development.

3.2.8 Promote
A visualization design that can be promoted has great value of univer-
sality that can reduce future design efforts. In medicine, visualization
design targeted at one problem can be promoted to other problems or
populations sharing certain characteristics. For example, in applica-
tions of medical communication, visualizations that are found to be
effective for target users can be promoted to other populations with
similar characteristics, such as whether they have a specific disease. In
applications for insight analysis and decision support, effective designs
for analysis tasks, such as survival analysis, in one visual analysis tool
can be promoted to other medical problems involving the task.

By summarizing experience and reflecting on the lessons learned,
visualization design guidelines can be developed and can then be gener-
alized to more similar visualizations. The promotion process is optional
and depends on the application positioning of the design study.



3.3 Summary of the Model
The new design study process model proposed in this paper aims to
provide a theoretical framework and practical guidance for visualization
and visual analysis work related to medicine. It can help researchers
with issues such as how to identify different stakeholders, how to
analyze problems and dismantle objectives, how to choose and design
the appropriate visualization techniques, and how to choose or combine
different evaluation methods.

4 USE CASES

In this section, we introduce the application of the proposed model to
guide one of our previous works and reanalyze three medical visualiza-
tion works using this model. Figures in this section in larger sizes can
be found in the supplemental material.

4.1 Guide: Multi-outcome Causal Graphs Analysis
We applied this model to guide the visual analysis of multi-outcome
causal graphs [14]. In collaboration with a clinical expert, we first
define the domain problem as analyzing interactions between multiple
disease outcomes and their influencing factors. Based on this problem,
we select two relevant datasets, identify the stakeholders facing this
problem (clinical and public health experts), and determine their re-
spective analytical objectives. Further refinement through stakeholder
engagement decomposes these goals into two distinct analysis stages
and six specific tasks, forming the system’s design requirements. To
address these requirements, we design and implement targeted visual-
ization techniques (e.g., comparative, progressive, multidimensional
visualization), appropriate visual encodings (e.g., grids, arrows), a
novel comparable layout algorithm, and dedicated interactive interfaces
for each stage. The effectiveness of the system is rigorously evaluated
using quantitative metrics, a qualitative case study (N = 1), and expert
user evaluation (N = 3). The whole process of the realization of this
work is illustrated in Fig. 3.

Fig. 3: The workflow of visual analysis of multi-outcome causal graphs
guided by the proposed design study process model.

Public health experts require methods to analyze interactions be-
tween specific multimorbidities and their influencing factors. We be-
lieve that certain interested multimorbidity can also be considered a
disease outcome. This indicates that the goals of public health and clin-
ical experts are to some extent consistent, and therefore, we consider
them as our overall target users. Considering different stakeholders
helps to understand and integrate various needs, promoting compre-
hensive and targeted visualization. One objective is to compare the
relationships between various disease outcomes and their influencing
factors. Achieving this goal depends on an accurate understanding of
the individual outcome-factor relationships, indicating the existence
of sequential dependencies. The new model proposes to distinguish
stages for the gradual design of visualization. We believe that the
phased design based on analytical logic is conducive to the design of
visualization solutions.

4.2 Reanalyze: PROACT
We reanalyze the design of PROACT [19], a visualization tool for effec-
tive communication of health risks targeted for prostate cancer patients,

Fig. 4: The workflow of the iterative design of PROACT reanalyzed under
the proposed design study process model.

using our model (Fig. 4). There, researchers first selected urologists as
their collaborators and determined the domain problem of communi-
cating personalized health risks to localized prostate cancer patients.
Urologists and prostate cancer patients are naturally determined as
stakeholders facing this problem. Through two rounds of discussions
with these stakeholders, researchers determined two analysis goals
and designed the initial six-page prototype, which combines visualiza-
tion techniques (e.g., pie charts and bar charts), a reasonable narrative
structure, and clinical prediction models supporting risk computing.
Pages here can correspond to analysis tasks in our model. It can also
be treated as stages, due to the requirement of a reasonable narrative
structure. Then they recruited both patients (N = 6) and doctors (N
= 2) to evaluate the initial prototype via a semi-structured interview.
Feedback led to an iterative redesign, resulting in a revised ten-page
prototype. A second evaluation with 6 new patients and the same 2
urologists assessed its effectiveness.

PROACT’s design addresses the distinct goals of both doctors and
patients, tailoring tools to enable comprehensive communication. It
uses a narrative structure aligned with the cognitive habits of the pa-
tients, organizing information on different pages. The phased design
based on the cognitive habits of target users enhances the clarity of
visualization.

4.3 Reanalyze: e-MedLearn

Fig. 5: The workflow of e-MedLearn reanalyzed under the proposed
design study process model.

The design of e-MedLearn [80] is reanalyzed as the third exam-
ple (Fig. 5). e-MedLearn is a tool for medical education targeted at
novice physicians. Researchers collaborated with both senior (teach-
ers) and novice (students) physicians to define the domain problem as
supporting students in problem-based learning (PBL), with a focus on
clinical reasoning-based differential diagnosis. Through stakeholder
discussions, they identified needs and barriers, shaping analysis goals.
These goals informed a three-stage, five-step process structure. The
solution features diverse visualizations (multi-level classification, mind
maps, etc.) integrated with a large language model to support different



functions. Design iterated from an initial single-interface prototype to a
revised version with step-specific features. Effectiveness was evaluated
through a two-stage study: a controlled study (N = 18, 9 e-MedLearn
vs. 9 baseline) and a testing interview (N = 13, 10 novice and 3 senior).

Taking into account the needs and concerns of both senior and
novice doctors, the designed tool has a wide applicability. Imagine
this scenario: if only the needs of novice doctors were considered, the
visualization design might only focus on how to learn and improve,
while neglecting the need to first select appropriate cases for learning
based on one’s ability level. Moreover, designing different functions
step by step according to analytical stages is conducive to a logical and
reasonable visual analysis process.

4.4 Reanalyze: GUCCI

Fig. 6: The workflow of GUCCI reanalyzed with our model.

The fourth example reanalyzes GUCCI [43] (Fig. 6), a tool for
cohort-based aortic blood flow analysis. Researchers collaborated
with an expert cardiac radiologist (30 years’ experience) to define the
domain problem: comparing aortic flow cohorts. Radiologists and
clinical experts were identified as stakeholders. Through discussions,
analysis goals were established, leading to eight system requirements.
These requirements defined specific steps (e.g., two steps for cohort
visualization). The design incorporates diverse visualizations (e.g.,
histograms, parallel coordinates, pixel plots, hexagons, violin plots)
and interactions (e.g., brushing & linking). GUCCI was evaluated via
a qualitative user study with three cardiac radiologists and two blood
flow visualization experts.

According to our model, the design of GUCCI considers distin-
guishing different subgroups. Hypothesis-based approach can help
researchers think about appropriate visualizations to support feature
comparisons among different subgroups before the design begins.

4.5 Summary of the Application of the Model
These works were selected based on three criteria: (1) Demonstrating
Dual Applicability: Showcasing that the model can both reanalyze ex-
isting works (PROACT, e-MedLearn, GUCCI) and guide new designs.
(2) Covering Diverse Professional Backgrounds and Applications: Rep-
resenting key application types outlined in Sec. 3.2.2. Specifically,
PROACT for patient communication, e-MedLearn for medical student
education, and GUCCI for expert insight analysis and decision sup-
port. (3) Encompassing Different Analytical Tasks: PROACT (descrip-
tive), e-MedLearn (inferential: hypothesis-free), GUCCI (inferential:
hypothesis-based). Collectively, they demonstrate the model’s applica-
bility and generalizability from multiple perspectives.

We have further applied this model to guide unpublished work be-
yond multi-outcome causal graph analysis (Sec. 4.1). Our experience
confirms that conducting thorough discussions with key stakeholders
helps align understanding and integrate comprehensive requirements,
driving effective visualization design. Using a phased approach and
adopting hypothesis-based methods if subgroups are involved can help
simplify and accelerate visual design. Feedback from collaborating
medical experts demonstrates the model’s value: it enhances cross-
disciplinary collaboration, boosts research efficiency, and delivers tar-
geted visualization solutions for medical problems.

5 RECOMMENDATIONS

Regarding the development of our new design study process model and
its application in four specific examples, we put forward the following
suggestions.

Identify various stakeholders and specify target users. Effec-
tively designing medical visualizations requires considering the diverse
cognition and needs of users with varying medical knowledge. Our
model integrates user-centered design [40] and participatory design [72]
principles. We advocate for engaging all key stakeholders throughout
the design process and prioritizing the target user’s perspective in
visualization and prototype design. Understanding the needs and per-
spectives of different stakeholders helps design various visualizations
specific to varying needs, enabling solutions for a wide range of use
cases [18]. Focusing on the target user ensures visualizations align
with their background and literacy. For example, PROACT addresses
potential low literacy among prostate cancer patients by utilizing sim-
ple visuals like pie charts and bar charts, balancing readability with
comprehension [19].

Align comprehension and cognition of different stakeholders.
Different stakeholders may have different understandings of the same
question or concept. For example, in the work of Sec. 4.1, clinical
experts comprehend the interactions between different factors as corre-
lations, while public health experts may understand them as causalities.
In addition, we learned that the causal graph in visualization can be
better comprehended as a Bayesian network by medical experts, as the
notion of causality is very rigorous in medicine, and, therefore, the ter-
minology is sensitive to medical experts. Aligning the comprehension
and cognition of different stakeholders and visualization researchers
through thorough discussions is a prerequisite for designing effective
visualizations.

Dismantle the analysis goals into various stages and tasks. Exper-
tise barriers make medical problems inherently complex. According to
the cognitive habits of knowledge acquisition or analytic logic, dividing
goals into different stages can simplify and speed up the visualization
design. Depending on the application and target users, tasks can be
categorized as inferential and descriptive, which can guide visualization
design. For inferential tasks involving subgroup analysis, a hypothesis-
based approach can improve the effectiveness of the visualization.

Prioritize a controlled study and calculate the minimum sample
size. We observe in our daily practice that what we do in visualization
work is to design a new system or tool that stakeholders, such as medi-
cal experts, have never seen before, and this applies to many previous
medical visualization works as well. It is of significance to verify the ef-
fectiveness of the designed system to related stakeholders. The current
common practice is to collect qualitative user comments and quantita-
tive results on the designed system through user evaluations, controlled
studies, or case studies, usually with relatively few participants (fewer
than a few dozen). Although different assessment methods provide
complementary insights, medical experts are more convinced by the
results of controlled studies. Therefore, we recommend prioritizing
controlled experiments for evaluating medical visualization systems.
To address the limitations of small sample sizes that threaten universal-
ity, reliability and effectiveness, we further advocate conducting pilot
studies to determine the minimum sample size and then recruit this
minimum sample size in formal controlled studies.

However, we also realize that recruiting participants is a challenge,
especially for applications involving medical professionals. For non-
professionals (e.g., patients, students) recruitment, crowdsourcing can
be an actionable option. For expert recruitment, we recommend priori-
tizing meeting minimum sample sizes. If still unachievable, consider
supplementing with robust quantitative evaluations. In addition, eth-
ical approval should always be ensured before conducting research
involving humans to ensure compliance and prevent delays in the study.
Researchers in the interdisciplinary field of medical visualization in the
future need to balance the reliability and feasibility of the evaluation
methods.



6 DISCUSSION

In this section, we first reflect on the proposed design study process
model, and then we compare it to existing models.

6.1 Reflection on the New Process Model
The model is based on the analysis and summary of medical-related
visualization papers (Sec. 3.1), references on other previous models
(Sec. 2.2), and our own interdisciplinary research experience. Although
the year range of the considered papers is limited, these papers cover
various data types, applications, stakeholders, etc.. The model has the
potential to apply to many medical visualization and visual analysis
works, which is illustrated by the examples mentioned in Sec. 4.

The main difference between the proposed model for medical visu-
alization and the previous design study process models is that it empha-
sizes the importance of distinguishing different stakeholders before the
specific design begins. This point of view comes from the finding that
62 of the 78 reviewed papers involve different stakeholders and that the
design or evaluation of a particular system or tool in these 62 papers
took into account the needs and backgrounds of various people. This
is consistent with previous studies stating that user and environment
characteristics affect the type of visualization tools needed [8] and the
effect of interaction techniques adopted [47]. Considering different
stakeholders can help obtain more comprehensive and differentiated
requirements compared to considering only individual stakeholders,
thereby facilitating the development of a universal and targeted visu-
alization design. However, in cases where stakeholder demands are
highly dispersed or complex, this may pose challenges for visualization
design, such as requiring more time and resources for consultations, or
making it difficult to integrate these requirements. When it is difficult
to reconcile multiple demands, prioritizing the needs of the target users
may be a reasonable approach.

Dismantling goals into different stages is the second emphasis of
this proposed model. We believe that distinguishing between differ-
ent stages according to the analysis process or knowledge acquisition
habits will benefit the design study of future medical visualization work.
Some medical visualization and visual analysis work focuses on com-
paring subgroups, and hypothesis-based analysis helps design suitable
visualizations to assist in analyzing the differences between different
subgroups. This forms the third emphasis of the proposed model –
dividing inferential tasks into hypothesis-based and hypothesis-free
according to whether subgroups are involved.

Although the model is proposed based on the summary and analysis
of research work on medical visualization, other fields may also benefit
from this model. For example, considering multiple stakeholders helps
achieve a more comprehensive visualization design, and differentiating
stages according to the analysis logic facilitates a logically reasonable
and progressive design of visualization solutions.

6.2 Comparison to Other Process Models
Our model can relate to some previous process models. In the following,
we discuss the connections and differences of our model mainly to the
well-known nested model [46] and the nine-stage framework [64].

• Collaborator selection is similar to winnow in the nine-stage
framework [64]. The difference is that we focus specifically on
collaborating with medical experts and provide criteria for their
selection. The aim is to clarify whose specific problems and needs
can be addressed by visualization.

• Domain problem identification is similar to the first level
of domain problem characterization mentioned in the nested
model [46] and discover in the nine-stage framework [64], which
also calls for consistent understanding of various concepts by
people with different disciplinary backgrounds (e.g., visualization
designers and medical experts), to make sure that the specific
medical problem is correctly comprehended by all parties.

• Stakeholders identification is a unique step of our model. We
think it ensures that the designed visualizations meet user require-
ments as early as possible, which can reduce possible resource

consumption due to iteration needs and is also beneficial for com-
prehensive and targeted visualization.

• Analytical goals localization shares some similarities with do-
main problem characterization in the nested model [46] and dis-
cover in the nine-stage framework [64]. The difference lies in that
the previous models mix questions, objectives, tasks, data, and
other elements, whereas in this model, the step focuses on first
obtaining the comprehensive analysis objectives from different
stakeholders to support subsequent effective visualization design.

• Goals dismantling is similar to operation abstraction in the
nested model [46] and discover in the nine-stage framework [64],
and the aim is to figure out a set of design requirements in the
vocabulary of computer science, guiding visualization researchers
in the design. The common practice of previous models is to
abstract goals to different tasks and data types [46]. We add
that goals can be broken down into different stages according to
analytical logic or cognitive habits. In addition, we propose to
take an inferential or descriptive approach to analyze the task,
depending on the target users and applications. We also suggest
applying hypothesis testing to help with inferential task analysis
if it involves subgroups. This step can simplify and speed up the
visualization design.

• Visualization design integrates both encoding/interaction tech-
nique and algorithm design in the nested model [46]. While
aligning with the design in the nine-stage framework [64], our
model refines this by relocating data abstraction to the earlier
goals dismantling phase, and centering design around differenti-
ated requirements. We further enhance this stage through practical
guidance on visualization technique selection.

• Prototype deployment is similar to implement in the nine-stage
framework [64]. In this step, we focus on the implementation
of the prototype and not on usability. In addition, we suggest
that different interfaces can be designed for different stages or
stakeholders.

• Evaluation includes implement, deploy, and reflect of the nine-
stage framework [64]. We also provide some evaluation methods
that future researchers can refer to. In addition, we propose
evaluation methods that are more recognized by medical experts
according to the specific characteristics of the medical field, which
also forms one of our recommendations.

The proposed model tailors visualization design to medical contexts
through domain-aware refinements. It expands on certain steps from
the previous model; for example, the discover stage in the nine-stage
framework corresponds to three steps in our models – domain prob-
lem identification, analytical goals localization, and goals dismantling,
which can enhance the model’s operability. Embedded step-by-step
guidance enables researchers to systematically develop effective medi-
cal visualization solutions.

7 CONCLUSION

We have introduced a design study process model for medical visualiza-
tion. The model is formulated based on characteristics of medical data
analysis problems and tasks summarized by a literature review com-
bined with our own interdisciplinary research experience. It features
three factors: stakeholders, stages, and subgroup analysis that need
to be carefully considered in a design study for medical visualization.
With four use cases of medical-related visualization works, we demon-
strate the usefulness of the model. We provide recommendations for
each step of the model. In a discussion, we reflect on the model and
delineate it from existing models.
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